International Baccalaureate
Baccalauréat International
Bachillerato Internacional

22106116

CHEMISTRY
 STANDARD LEVEL PAPER 1

Wednesday 12 May 2010 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1. What is the coefficient of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ when the following equation is balanced using the lowest whole numbers?

$$
\ldots \mathrm{Al}(\mathrm{~s})+\ldots \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \rightarrow _\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots \mathrm{Fe}(\mathrm{~s})
$$

A. 2
B. 3
C. 4
D. 5
2. What is the mass, in g , of one molecule of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$?
A. 3.0×10^{-23}
B. 5.0×10^{-23}
C. 30
D. 1.8×10^{25}
3. Which molecular formula is also an empirical formula?
A. PCl_{3}
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
4. Which of the following is consistent with Avogadro's law?
A. $\frac{P}{T}=\operatorname{constant}(V, n$ constant $)$
B. $\frac{V}{T}=\operatorname{constant}(P, n$ constant $)$
C. $\quad V n=\operatorname{constant}(P, T$ constant $)$
D. $\frac{V}{n}=\operatorname{constant}(P, T$ constant $)$
5. A sample of element X contains 69% of ${ }^{63} \mathrm{X}$ and 31% of ${ }^{65} \mathrm{X}$. What is the relative atomic mass of X in this sample?
A. 63.0
B. 63.6
C. 65.0
D. 69.0
6. How many electrons does the ion ${ }_{15}^{31} \mathrm{P}^{3-}$ contain?
A. 12
B. 15
C. 16
D. 18
7. What is the electron arrangement of the Mg^{2+} ion?
A. 2,2
B. 2,8
C. $2,8,2$
D. $2,8,8$
8. Which property decreases down group 7 in the periodic table?
A. Melting point
B. Electronegativity
C. Atomic radius
D. Ionic radius
9. Which oxides produce an acidic solution when added to water?
I. $\quad \mathrm{P}_{4} \mathrm{O}_{10}$
II. MgO
III. SO_{3}
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
10. What is the formula of magnesium fluoride?
A. $\quad \mathrm{Mg}_{2} \mathrm{~F}_{3}$
B. $\mathrm{Mg}_{2} \mathrm{~F}$
C. $\mathrm{Mg}_{3} \mathrm{~F}_{2}$
D. MgF_{2}
11. What is the shape of the ammonia molecule, NH_{3} ?
A. Trigonal planar
B. Trigonal pyramidal
C. Linear
D. V-shaped (bent)
12. Which molecule is polar?
A. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
B. BCl_{3}
C. Cl_{2}
D. CCl_{4}
13. Which substance can form intermolecular hydrogen bonds in the liquid state?
A. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{CHO}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
14. Which compound has a covalent macromolecular (giant covalent) structure?
A. $\mathrm{MgO}(\mathrm{s})$
B. $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
C. $\quad \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$
D. $\mathrm{SiO}_{2}(\mathrm{~s})$
15. The standard enthalpy changes for the combustion of carbon and carbon monoxide are shown below.

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{\mathrm{c}}^{\ominus}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{\mathrm{c}}^{\ominus}=-283 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

What is the standard enthalpy change, in kJ , for the following reaction?

$$
\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})
$$

A. -677
B. -111
C. +111
D. +677
16. Which is correct about energy changes during bond breaking and bond formation?

	Bond breaking	Bond formation
A.	exothermic and ΔH positive	endothermic and ΔH negative
B.	exothermic and ΔH negative	endothermic and ΔH positive
C.	endothermic and ΔH positive	exothermic and ΔH negative
D.	endothermic and ΔH negative	exothermic and ΔH positive

17. Which processes are exothermic?
I. Ice melting
II. Neutralization
III. Combustion
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
18. Which unit could be used for the rate of a chemical reaction?
A. mol
B. moldm^{-3}
C. $\mathrm{moldm} \mathrm{S}^{-3} \mathrm{~s}^{-1}$
D. dm^{3}
19. Which of the following can increase the rate of a chemical reaction?
I. Increasing the temperature
II. Adding a catalyst
III. Increasing the concentration of reactants
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
20. What is the equilibrium constant expression, K_{c}, for the following reaction?

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A. $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}$
B. $K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$
C. $K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]^{2}}$
D. $K_{\mathrm{c}}=\left[\mathrm{NO}_{2}\right]\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]^{2}$
21. Consider the endothermic reaction below.

$$
5 \mathrm{CO}(\mathrm{~g})+\mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 5 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

According to Le Chatelier's principle, which change would result in an increase in the amount of CO_{2} ?
A. Increasing the temperature
B. Decreasing the temperature
C. Increasing the pressure
D. Decreasing the pressure
22. Which species behave as Brønsted-Lowry acids in the following reversible reaction?

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HCN}(\mathrm{aq})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq})
$$

A. HCN and CN^{-}
B. HCN and HPO_{4}^{2-}
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$
D. HCN and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
23. Which of the following are weak acids in aqueous solution?
I. $\mathrm{CH}_{3} \mathrm{COOH}$
II. $\mathrm{H}_{2} \mathrm{CO}_{3}$
III. HCl
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
24. In which species does sulfur have an oxidation number of 0 ?
A. SO_{3}
B. S_{8}
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $\mathrm{H}_{2} \mathrm{~S}$
25. What is the reducing agent in the reaction below?

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

A. Br^{-}
B. BrO_{3}^{-}
C. MnO_{4}^{-}
D. MnO_{2}
26. Which changes could take place at the positive electrode (cathode) in a voltaic cell?
I. $\quad \mathrm{Zn}^{2+}(\mathrm{aq})$ to $\mathrm{Zn}(\mathrm{s})$
II. $\quad \mathrm{Cl}_{2}(\mathrm{~g})$ to $\mathrm{Cl}^{-}(\mathrm{aq})$
III. $\mathrm{Mg}(\mathrm{s})$ to $\mathrm{Mg}^{2+}(\mathrm{aq})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
27. What is the structural formula of 2,3-dibromo-3-methylhexane?
A. $\mathrm{CH}_{3} \mathrm{CHBrCHBrCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CHBrCBr}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCBr}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$
D. $\mathrm{CH}_{3} \mathrm{CHBrCHBrCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$
28. What happens when a few drops of bromine water are added to excess hex-1-ene and the mixture is shaken?
I. The colour of the bromine water disappears.
II. The organic product formed does not contain any carbon-carbon double bonds.
III. 2-bromohexane is formed.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
29. What is the product of the following reaction?

$$
\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{H}^{+}}
$$

A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
30. How many significant figures are there in 0.00370 ?
A. 2
B. 3
C. 5
D. 6

